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Versatility of Nanotubes
Covalent Sidewall Functionalization

solubility
matrix incorporation

attachment of targets and therapeutics
quenches NIRF, usually

Filling
CT contrast imaging – I2

MR contrast imaging – Gd3+

cell tracking
carry cargo

Non-Covalent Sidewall Functionalization
solubility 

matrix incorporation
attachment of targets and therapeutics
allows NIR fluorescence and ablation

Covalent End 
Functionalization

solubility
matrix incorporation

attachment of targets and therapeutics
allows NIRF with L > 100 nm

Inherent NIRF
contrast imaging

cell tracking
thermal ablation

biomolecule detection

http://images.google.com/imgres?imgurl=http://home.hiroshima-u.ac.jp/srphys/nanotube/nanotube_structure.jpg&imgrefurl=http://home.hiroshima-u.ac.jp/srphys/nanotube/nanotube.html&h=208&w=239&sz=10&tbnid=-1B6mOaEpaTB6M:&tbnh=90&tbnw=104&hl=en&start=31&prev=/images%3Fq%3Dnanotube%26start%3D20%26svnum%3D10%26hl%3Den%26lr%3D%26rls%3DGGLG,GGLG:2006-01,GGLG:en%26sa%3DN
http://www.uth.tmc.edu/


Carbon Nanotube Impact on Medicine
Administration/Implantation

Material Engineering
strength enhancement
electrical

Contrast Agents
inherent NIR
filling

Therapeutic Agents
ablation
drug attachment
radical scavenging

Devices
monitor biomolecule levels

Environmental Health and Safety
occupational exposure

http://www.uth.tmc.edu/


Therapeutic Agents
Radical Scavenging Formulations

http://www.uth.tmc.edu/


Radiation-Induced Oxidative Stress

A

B

C

1° DSBs

2° ROS damage Macromolecular
damage

D
D

V
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H   H

E

F

Changes in gene transcription
Changes in cell cycle

Inflammatory responses

Target 1: Extracellular ROS induced by direct radiation (A).

Target 2: Cellular ROS (C,D).

Target 3: Autocrine secondary ROS (E).

Target 4: Paracrine secondary ROS (F).

http://www.uth.tmc.edu/


Carbon Nanomaterial Radioprotectors
Zebrafish Morphological Changes with Radiation Exposure

10 μM ZD1839 – Radiosensitization4 mM Amifostine – Radioprotector

Efficacy of DF-1 at only 100 μM

DF-1 was added 3 h prior 
to IR at 24 hpf

Morphology was assessed either 
3 d (20 Gy) or 6 d (40 Gy) post 

fertilization

0 μM

100 µM

40 Gy0 Gy 20 Gy
Radiation dose (Gy)

B Daroczi, et al. Clin Cancer Res 12(23) 7086.
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Radical
AAPH thermal initiation

Radical Scavenger
Trolox – assay comparison
Amifostine – gold standard

Indicator
Fluorescein

Calculate Antioxidant Capacity in Trolox 
Equivalents

Oxygen Radical Absorbance Capacity



Compound Trolox Equivalents

DF-1 5

Pluronic Suspended SWCNT
Covalent BHT

600
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Carbon Nanomaterial Radioprotectors
Cell-Free ORAC Assay

Work with Rice University, NASA-JSC, and MDACC.

http://www.uth.tmc.edu/


Radiation DF-1 +MN -MN %MN
0 - 1 521 0.19
0 + 2 567 0.35
2 - 55 688 7.40
2 + 29 668 4.16

Carbon Nanomaterial Radioprotectors
In Vitro Micronuclei Assay

Work with Rice University, NASA-JSC, and MDACC.

http://www.uth.tmc.edu/


Carbon Nanotube Behavior
In Vitro and In Vivo

http://www.uth.tmc.edu/


Biodistribution Literature
2004 – Wang, et al. investigated the 
biodistribution of hydroxylated SWCNTs in 
mice

Nanotube Characterization
“purity” via Raman and TEM
length via laser scattering

280-450 nm
concentration via UV-vis absorbance 
spectroscopy
biodistribution via 125I labeling

Findings
80% excreted within 11 days

94% urine, 6% feces
bone > kidney > stomach

2005 – Radomski, et al. investigated 
nanoparticle-induced vascular thrombosis

Nanotube Characterization
purchased purified, no independent 
characterization

Findings
MCN > SWCNT > MWCNT > standard 
urban particulate matter induced vascular 
thrombosis
C60 did not induce thrombosis

H Wang, et al. J. Nanosci. Nanotech. 4(8), 1019.
A Radomski, et al. Brit. J. Pharma. 146, 882.

http://www.uth.tmc.edu/


Biodistribution Literature

R Singh, et al. PNAS 103(9), 3357.

2006 – Singh, et al. investigated biodistribution of 
ammonium functionalized SWCNT and MWCNT

Nanotube Characterization
“purity” from manufacturer
diameter from manufacturer

~ 1 nm SWCNT, no distribution given
20-30 nm MWCNT, no distribution given

length from manufacturer
300-1000 nm SWCNT, no distribution given
500-2000 nm MWCNT, no distribution given

mention in-solution physical characteristics will be 
different than bulk measurements above
biodistribution via 111In labeling

Findings
kidney > muscle > skin > bone …
3-3.5 hr half life
no acute toxicity

http://www.uth.tmc.edu/


Biodistribution Literature

A Radomski, et al. Brit. J. Pharma. 146, 882.

2007 – Guo, et al, investigated biodistribution and 
clearance of glucosamine functionalized MWCNT

Nanotube Characterization
measurements made throughout process MWCNTs

as-received
purified
functionalized

“purity” via TGA and ICP-MS
as-received

> 95% MWCNT
< 3% amorphous carbon
0.6% Ni

Purified
> 96% MWCNT
< 0.2% Ni

diameter and length via TEM
20-40 nm diameter and tens of microns long

functionalization confirmation via FTIR
biodistribution via 99mTc labeling

Findings
5 hr half-life
excretion via urine and feces, roughly 50:50

http://www.uth.tmc.edu/


Standards Needed

http://www.uth.tmc.edu/


Standards Needed

Standard Samples

Standard Characterization Protocols
1. Composition

• Catalyst Content
• Non-NT Carbon
• Carbon Nanotube Content

2. Aspect Ratio/Length
3. Solution Concentration
4. Surface Functionalization

• surface charge per unit length
• degree of functionalization

http://www.uth.tmc.edu/
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